Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Threshold response of mesophyll CO2 conductance to leaf hydraulics in highly transpiring hybrid poplar clones exposed to soil drying.

Identifieur interne : 001F98 ( Main/Exploration ); précédent : 001F97; suivant : 001F99

Threshold response of mesophyll CO2 conductance to leaf hydraulics in highly transpiring hybrid poplar clones exposed to soil drying.

Auteurs : Guillaume Théroux-Rancourt [Canada] ; Gilbert Éthier ; Steeve Pepin

Source :

RBID : pubmed:24368507

Descripteurs français

English descriptors

Abstract

Mesophyll conductance (gm) has been shown to impose significant limitations to net CO2 assimilation (A) in various species during water stress. Net CO2 assimilation is also limited by stomatal conductance to water (gsw), both having been shown to co-vary with leaf hydraulic conductance (Kleaf). Lately, several studies have suggested a close functional link between Kleaf, gsw, and gm. However, such relationships could only be circumstantial since a recent study has shown that the response of gm to drought could merely be an artefactual consequence of a reduced intercellular CO2 mole fraction (Ci). Experiments were conducted on 8-week-old hybrid poplar cuttings to determine the relationship between Kleaf, gsw, and g m in clones of contrasting drought tolerance. It was hypothesized that changes in gsw and Kleaf in response to drought would not impact on gm over most of its range. The results show that Kleaf decreased in concert with g sw as drought proceeded, whereas gm measured at a normalized Ci remained relatively constant up to a g sw threshold of ~0.15 mol m(-2) s(-1). This delayed gm response prevented a substantial decline in A at the early stage of the drought, thereby enhancing water use efficiency. Reducing the stomatal limitation of droughted plants by diminishing the ambient CO2 concentration of the air did not modify gm or Kleaf. The relationship between gas exchange and leaf hydraulics was similar in both drought-tolerant and drought-sensitive clones despite their contrasting vulnerability to stem cavitation and stomatal response to soil drying. The results support the hypothesis of a partial hydraulic isolation of the mesophyll from the main transpiration pathway.

DOI: 10.1093/jxb/ert436
PubMed: 24368507
PubMed Central: PMC3904724


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Threshold response of mesophyll CO2 conductance to leaf hydraulics in highly transpiring hybrid poplar clones exposed to soil drying.</title>
<author>
<name sortKey="Theroux Rancourt, Guillaume" sort="Theroux Rancourt, Guillaume" uniqKey="Theroux Rancourt G" first="Guillaume" last="Théroux-Rancourt">Guillaume Théroux-Rancourt</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Plant Sciences, Horticultural Research Center, Université Laval, 2480 boul. Hochelaga, Quebec, QC, G1V 0A6, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Plant Sciences, Horticultural Research Center, Université Laval, 2480 boul. Hochelaga, Quebec, QC, G1V 0A6</wicri:regionArea>
<orgName type="university">Université Laval</orgName>
<placeName>
<settlement type="city">Québec (ville)</settlement>
<region type="state">Québec</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ethier, Gilbert" sort="Ethier, Gilbert" uniqKey="Ethier G" first="Gilbert" last="Éthier">Gilbert Éthier</name>
</author>
<author>
<name sortKey="Pepin, Steeve" sort="Pepin, Steeve" uniqKey="Pepin S" first="Steeve" last="Pepin">Steeve Pepin</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24368507</idno>
<idno type="pmid">24368507</idno>
<idno type="doi">10.1093/jxb/ert436</idno>
<idno type="pmc">PMC3904724</idno>
<idno type="wicri:Area/Main/Corpus">002363</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002363</idno>
<idno type="wicri:Area/Main/Curation">002363</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002363</idno>
<idno type="wicri:Area/Main/Exploration">002363</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Threshold response of mesophyll CO2 conductance to leaf hydraulics in highly transpiring hybrid poplar clones exposed to soil drying.</title>
<author>
<name sortKey="Theroux Rancourt, Guillaume" sort="Theroux Rancourt, Guillaume" uniqKey="Theroux Rancourt G" first="Guillaume" last="Théroux-Rancourt">Guillaume Théroux-Rancourt</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Plant Sciences, Horticultural Research Center, Université Laval, 2480 boul. Hochelaga, Quebec, QC, G1V 0A6, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Plant Sciences, Horticultural Research Center, Université Laval, 2480 boul. Hochelaga, Quebec, QC, G1V 0A6</wicri:regionArea>
<orgName type="university">Université Laval</orgName>
<placeName>
<settlement type="city">Québec (ville)</settlement>
<region type="state">Québec</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ethier, Gilbert" sort="Ethier, Gilbert" uniqKey="Ethier G" first="Gilbert" last="Éthier">Gilbert Éthier</name>
</author>
<author>
<name sortKey="Pepin, Steeve" sort="Pepin, Steeve" uniqKey="Pepin S" first="Steeve" last="Pepin">Steeve Pepin</name>
</author>
</analytic>
<series>
<title level="j">Journal of experimental botany</title>
<idno type="eISSN">1460-2431</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Calibration (MeSH)</term>
<term>Carbon Dioxide (metabolism)</term>
<term>Carbon Dioxide (pharmacology)</term>
<term>Chlorophyll (metabolism)</term>
<term>Clone Cells (MeSH)</term>
<term>Desiccation (MeSH)</term>
<term>Droughts (MeSH)</term>
<term>Electron Transport (drug effects)</term>
<term>Fluorescence (MeSH)</term>
<term>Hybridization, Genetic (MeSH)</term>
<term>Mesophyll Cells (metabolism)</term>
<term>Photosynthesis (drug effects)</term>
<term>Plant Stems (drug effects)</term>
<term>Plant Stems (physiology)</term>
<term>Plant Stomata (physiology)</term>
<term>Plant Transpiration (drug effects)</term>
<term>Plant Transpiration (physiology)</term>
<term>Populus (drug effects)</term>
<term>Populus (physiology)</term>
<term>Soil (MeSH)</term>
<term>Water (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Calibrage (MeSH)</term>
<term>Cellules du mésophylle (métabolisme)</term>
<term>Chlorophylle (métabolisme)</term>
<term>Clones cellulaires (MeSH)</term>
<term>Dessiccation (MeSH)</term>
<term>Dioxyde de carbone (métabolisme)</term>
<term>Dioxyde de carbone (pharmacologie)</term>
<term>Eau (MeSH)</term>
<term>Fluorescence (MeSH)</term>
<term>Hybridation génétique (MeSH)</term>
<term>Photosynthèse (effets des médicaments et des substances chimiques)</term>
<term>Populus (effets des médicaments et des substances chimiques)</term>
<term>Populus (physiologie)</term>
<term>Sol (MeSH)</term>
<term>Stomates de plante (physiologie)</term>
<term>Sécheresses (MeSH)</term>
<term>Tiges de plante (effets des médicaments et des substances chimiques)</term>
<term>Tiges de plante (physiologie)</term>
<term>Transpiration des plantes (effets des médicaments et des substances chimiques)</term>
<term>Transpiration des plantes (physiologie)</term>
<term>Transport d'électrons (effets des médicaments et des substances chimiques)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbon Dioxide</term>
<term>Chlorophyll</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Carbon Dioxide</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Electron Transport</term>
<term>Photosynthesis</term>
<term>Plant Stems</term>
<term>Plant Transpiration</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Photosynthèse</term>
<term>Populus</term>
<term>Tiges de plante</term>
<term>Transpiration des plantes</term>
<term>Transport d'électrons</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Mesophyll Cells</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cellules du mésophylle</term>
<term>Chlorophylle</term>
<term>Dioxyde de carbone</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Dioxyde de carbone</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Populus</term>
<term>Stomates de plante</term>
<term>Tiges de plante</term>
<term>Transpiration des plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Plant Stems</term>
<term>Plant Stomata</term>
<term>Plant Transpiration</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Calibration</term>
<term>Clone Cells</term>
<term>Desiccation</term>
<term>Droughts</term>
<term>Fluorescence</term>
<term>Hybridization, Genetic</term>
<term>Soil</term>
<term>Water</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Calibrage</term>
<term>Clones cellulaires</term>
<term>Dessiccation</term>
<term>Eau</term>
<term>Fluorescence</term>
<term>Hybridation génétique</term>
<term>Sol</term>
<term>Sécheresses</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Mesophyll conductance (gm) has been shown to impose significant limitations to net CO2 assimilation (A) in various species during water stress. Net CO2 assimilation is also limited by stomatal conductance to water (gsw), both having been shown to co-vary with leaf hydraulic conductance (Kleaf). Lately, several studies have suggested a close functional link between Kleaf, gsw, and gm. However, such relationships could only be circumstantial since a recent study has shown that the response of gm to drought could merely be an artefactual consequence of a reduced intercellular CO2 mole fraction (Ci). Experiments were conducted on 8-week-old hybrid poplar cuttings to determine the relationship between Kleaf, gsw, and g m in clones of contrasting drought tolerance. It was hypothesized that changes in gsw and Kleaf in response to drought would not impact on gm over most of its range. The results show that Kleaf decreased in concert with g sw as drought proceeded, whereas gm measured at a normalized Ci remained relatively constant up to a g sw threshold of ~0.15 mol m(-2) s(-1). This delayed gm response prevented a substantial decline in A at the early stage of the drought, thereby enhancing water use efficiency. Reducing the stomatal limitation of droughted plants by diminishing the ambient CO2 concentration of the air did not modify gm or Kleaf. The relationship between gas exchange and leaf hydraulics was similar in both drought-tolerant and drought-sensitive clones despite their contrasting vulnerability to stem cavitation and stomatal response to soil drying. The results support the hypothesis of a partial hydraulic isolation of the mesophyll from the main transpiration pathway.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24368507</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>09</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1460-2431</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>65</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2014</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Journal of experimental botany</Title>
<ISOAbbreviation>J Exp Bot</ISOAbbreviation>
</Journal>
<ArticleTitle>Threshold response of mesophyll CO2 conductance to leaf hydraulics in highly transpiring hybrid poplar clones exposed to soil drying.</ArticleTitle>
<Pagination>
<MedlinePgn>741-53</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/jxb/ert436</ELocationID>
<Abstract>
<AbstractText>Mesophyll conductance (gm) has been shown to impose significant limitations to net CO2 assimilation (A) in various species during water stress. Net CO2 assimilation is also limited by stomatal conductance to water (gsw), both having been shown to co-vary with leaf hydraulic conductance (Kleaf). Lately, several studies have suggested a close functional link between Kleaf, gsw, and gm. However, such relationships could only be circumstantial since a recent study has shown that the response of gm to drought could merely be an artefactual consequence of a reduced intercellular CO2 mole fraction (Ci). Experiments were conducted on 8-week-old hybrid poplar cuttings to determine the relationship between Kleaf, gsw, and g m in clones of contrasting drought tolerance. It was hypothesized that changes in gsw and Kleaf in response to drought would not impact on gm over most of its range. The results show that Kleaf decreased in concert with g sw as drought proceeded, whereas gm measured at a normalized Ci remained relatively constant up to a g sw threshold of ~0.15 mol m(-2) s(-1). This delayed gm response prevented a substantial decline in A at the early stage of the drought, thereby enhancing water use efficiency. Reducing the stomatal limitation of droughted plants by diminishing the ambient CO2 concentration of the air did not modify gm or Kleaf. The relationship between gas exchange and leaf hydraulics was similar in both drought-tolerant and drought-sensitive clones despite their contrasting vulnerability to stem cavitation and stomatal response to soil drying. The results support the hypothesis of a partial hydraulic isolation of the mesophyll from the main transpiration pathway.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Théroux-Rancourt</LastName>
<ForeName>Guillaume</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Sciences, Horticultural Research Center, Université Laval, 2480 boul. Hochelaga, Quebec, QC, G1V 0A6, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Éthier</LastName>
<ForeName>Gilbert</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pepin</LastName>
<ForeName>Steeve</ForeName>
<Initials>S</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>12</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Exp Bot</MedlineTA>
<NlmUniqueID>9882906</NlmUniqueID>
<ISSNLinking>0022-0957</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>1406-65-1</RegistryNumber>
<NameOfSubstance UI="D002734">Chlorophyll</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>142M471B3J</RegistryNumber>
<NameOfSubstance UI="D002245">Carbon Dioxide</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002138" MajorTopicYN="N">Calibration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002245" MajorTopicYN="N">Carbon Dioxide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002734" MajorTopicYN="N">Chlorophyll</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002999" MajorTopicYN="N">Clone Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003890" MajorTopicYN="Y">Desiccation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055864" MajorTopicYN="N">Droughts</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004579" MajorTopicYN="N">Electron Transport</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005453" MajorTopicYN="N">Fluorescence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006824" MajorTopicYN="Y">Hybridization, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058503" MajorTopicYN="N">Mesophyll Cells</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018547" MajorTopicYN="N">Plant Stems</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054046" MajorTopicYN="N">Plant Stomata</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018526" MajorTopicYN="N">Plant Transpiration</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="Y">Soil</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Drought</Keyword>
<Keyword MajorTopicYN="N">Populus</Keyword>
<Keyword MajorTopicYN="N">internal CO2 conductance</Keyword>
<Keyword MajorTopicYN="N">leaf hydraulic conductance</Keyword>
<Keyword MajorTopicYN="N">stomatal limitation</Keyword>
<Keyword MajorTopicYN="N">water use efficiency.</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>12</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>12</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>9</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24368507</ArticleId>
<ArticleId IdType="pii">ert436</ArticleId>
<ArticleId IdType="doi">10.1093/jxb/ert436</ArticleId>
<ArticleId IdType="pmc">PMC3904724</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Exp Bot. 2009;60(8):2325-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19443613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1992 Apr;98(4):1429-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1983 Nov;73(3):609-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16663267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2012 Jan;63(1):413-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21914657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2009 Oct;32(10):1285-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19453484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(8):2379-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19321646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2006;57:361-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16669766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2010 Dec;140(4):321-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20681973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2008 May;31(5):602-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17996013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(8):2217-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19357431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2007 Oct;30(10):1284-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17727418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2010 Jul;33(7):1059-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20199629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Jan;197(1):65-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23106390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 May;156(1):90-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21441385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Oct 8;285(41):31253-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20657033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2013 Apr;36(4):828-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23046275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Aug;144(4):1890-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17556506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2012 Mar;35(3):611-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21988489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2013 Nov;117(1-3):45-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23670217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Dec;130(4):1992-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12481082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2006 Dec;29(12):2205-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17081253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2010 Jul;33(7):1176-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20199618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;181(3):672-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19032443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2007;58(6):1533-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17339650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2012 Jun;35(6):1077-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22150826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2006;57(14):3659-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16968885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2002 Sep;43(9):1017-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12354919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Aug;167(2):403-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15998394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Mar;20(3):648-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18349152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Jul;67(1):72-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21401747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2012 Dec;35(12):2087-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22590996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2008;59(2):327-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18238801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2010 Aug 1;33(8):1285-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20302602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Jan;143(1):122-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17114274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1975 Jan;125(3):243-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24435438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2012 Jun;15(3):276-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22300606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1988 Nov;88(3):574-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16666351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2012 Apr;35(4):760-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21999411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2006 Dec;29(12):2168-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17081250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1992 Apr;98(4):1437-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(8):2391-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19457982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1997 Oct;17(10):647-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14759904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Aug;132(4):2166-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12913171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(8):2235-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19395390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2006 Jul;47(7):972-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16774929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(8):2303-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19286919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Apr;134(4):1824-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15064368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2008 May;31(5):658-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18266903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2011 Oct;143(2):154-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21623799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2005 Nov;25(11):1409-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16105808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2011 Mar;31(3):240-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21444373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2008;59:595-624</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18444909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2007 Aug;30(8):910-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17617819</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
<region>
<li>Québec</li>
</region>
<settlement>
<li>Québec (ville)</li>
</settlement>
<orgName>
<li>Université Laval</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Ethier, Gilbert" sort="Ethier, Gilbert" uniqKey="Ethier G" first="Gilbert" last="Éthier">Gilbert Éthier</name>
<name sortKey="Pepin, Steeve" sort="Pepin, Steeve" uniqKey="Pepin S" first="Steeve" last="Pepin">Steeve Pepin</name>
</noCountry>
<country name="Canada">
<region name="Québec">
<name sortKey="Theroux Rancourt, Guillaume" sort="Theroux Rancourt, Guillaume" uniqKey="Theroux Rancourt G" first="Guillaume" last="Théroux-Rancourt">Guillaume Théroux-Rancourt</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001F98 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001F98 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24368507
   |texte=   Threshold response of mesophyll CO2 conductance to leaf hydraulics in highly transpiring hybrid poplar clones exposed to soil drying.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24368507" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020